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W ABSTRACT
L In a ggﬁe;al case of Hamiltonian systemy of n degrees

of freedom, depending periodically on the time, n formal

"third" iétegﬁéiswof,motion'are found. Their appliéatioh

in‘fiﬁéiﬁgﬁbéuh§éiiesprr the orbits is illustrated in a

1ntegra s and the adlabatxc invariants. Both‘are series

expans;ons but tbe small parametet used is of dlfferent

character in'each case. This is shown explicitly in a

simple example and the relative accuracy of the two

expansions is discussed.
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I. INTRODUCTION

It is well known that, under certain conditions,

adiabatic invariants are constant to all ordemny in the

1

small parameter™, i.e., they are formal integrals of motion.

On the other hand in most time independent Hamiltonian
systems of n degrees of freedcocm one can find n formal

‘ .2 . . .
integrals of motion , as power series in the coordinates

D

nd momenta. We call any such integral a "third"” integral,
to distinguish it from the classical energy and angular
momentum integrals.

The same method can be applied to a general case of
n degrees of freedom, when the potential 1is expressed as
a series in the coordinates, and is periodic in time.

Th¢n n formal integrals are found, which are periodic in

time.

k™
44

[i1]

re are a few similarities between these integrals and
the adiabatic invariants, but some important differences also.
Thiecse are illustrated in the last section, wnere both a "third"
integral and an adiabatic invariant are constructed for the

same dynamical system.

1
4

S¢e M. Kruskal, J. Math. Phys., 3, B06(1962) and references
there,

G. Contopoulos, 2. Astrophysik, 49, 273 (1960);
Astron. J. 68, 1 (1963).




II. INTEGRALS OF MOTION IN PERIODIC POTENTIALS ,\

Suppose that a potential is given as a series in the
coordinates, beginning with terms of second degree, and
periodic with respect to the time, with peried 2-/u«.

Then the Hamiltonian
H=H. + H, + ... , (1)

is also periodic in t, and it has the origin as equili-
brium point. We will consider the case when the character-
1stic exponents of the equilibrium solution are pure
imaglnary and not equal. This is a most common case in
applications. Then we can use a linear transformation of
the variables , with coefficients periodic in t, and £find

a new Hamiltonian of the same form, where

n
T owi, 2 2
Hy= , &5 *v¥5) (2)

_ . 3 .
in the new variables ., If we introduce further new

coordinates and moméenta,

A. Liapounoff, Probleme Général de la Stabilit€ du
Mouverent, Ann. Fac. Sci. Toulouse,2nd Ser. 9 (13907),
p. 281, 398.
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Xi = X:L/v gi )
(3}
Yi TV 5 /
we find
1 c 2 2 2
H2 = 5 (xi X, + yi)’ (4)
iz=

n harmonic oscillators. Then H3,H4 .

womogeneous polynomials in %, y. . of degree 3, 4 ...,
hi

e o
Qi ddnsiin 12
- -

periodic in t, with period 2=/4: hence the coefficients

T gZin
rﬁ_,{_;t TX

8 order Hamiltonian is independent of time and

-

of the different terms can be given in the form Coos X

with integer m, a,, b , and c constant.

Let us assume further that no relation of the form
m., W, +M_ 4. + ... +ma =0 (5}

exists with integer ml, M, . and m equal to any of the

above given values. If m takes also the value 0, we

assume that (5) is not satisfied, unless ml =m, = ... = 0.

Then we can construct, step by step, n integrals in

the form of series
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§i=§i2+%13+¢i4+...; (6}
wnere
2 T %(ui Xi * yi) ’ 7
and }1; is a homogenecus polynomial of degree Vv in xi,yir

pericdic in t, with period 2n/w.

In fact any integral (6} satisfies the eguation

3% 3%, n ad 3%
i 2 ey — i e 1 2H i 3H ~
at + (’i'di = a3t + Z_J (\ ;‘-- .-—... - -~ vy :-\-r )l = O 7 (8}
, °fi °¥j oF; ©%y7
l:
which can be split into the equations
ad
—2 + (5, ,H) =0 (9)
3t 127772 i
= l,*u'*‘l . -
—_— + (&, H + (2, H + (%, 'H + .. =0
3t ¢ i, v+l 2) ( i, 3) ( i,v=-1 4) .
Equation (10) is a linear partial differential
equation that gives ¢, when the previous terms of the

b P \"‘f'l

series @i are known. The corresponding system to this

eguation 1is

(10)



dx dy at
1 i i,v+1
dt = = = - . 11
y 3 3 (11}
1 o~ x, i,
i7i
where the function
K = - (3 H (%, H - e {12
i,v RN 3) i,v=1"' 4) )
is known, and is of degree v+l.
This gives
x, = (f21. _/uw ¥sin w, (t-t,
i i2" 71 it 1)/
(13)
7y = 75 % ~roe 6 (bt )
Y3 Y2 ittt it
Then
i = K. dt 14
!l’,‘)*_l ., 1,\} ( )
where K, is written in the form
i
RuBt {m o
~ = +ni = +ng .
B gl2%, 2: 8¢ SIL W (t=t.) + mow, (=t )+ + mut (15)
PR \“ 2.0 7t cosN1'1 L 2%2 TR S
Z £
where m.,m_,n.,n., are integers, n,> 0, n 0 é(gm l+im, |+ }
‘ 1202 SR MR A S B I k2 B
+on, +on, +,.. = ,+1, and g are constants. If no coefficient
(5} is zero, then eguation (l4) is integrated and gives ?l 1
NG
P

4s a sum of the same form as {(15). This can be expressed as a
polynomial of degree v+l in X, 0¥ with coefficients of the

sin
form muwt .
cos
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If H contains time independent terms, the corresponding

is zero. Then if K. contains a term with a cosine and
v

m, T, T ... S 0 . this will give a secular term in

A
?l 1° It can be proved, however, as in the two dimen-

e

(N . . . .

sional case that K, never includes cosine$ with m, =m =,..=0.
- } 1, v 2
Therefore

n formal integrals can always be constructed, step by step.

Iif for certain values of m,, mzf ... m, the corresponé-

ing quantity (5) is zero, the above integrals are no more

valid. Then, however, the system (l1) has further the

integrals
il tmol
P - 2 = -_2- Sln £, \ . .
CN = (2‘:12) (2:22) v e s COS@I.J‘}_(t tl)+ mziz(t t2)+...-r i\»At)I

which are polynomials in X oY, of degree M =!mll+§n2§+ cee .
Then one can construct two integrals of the form

S =8, + 8 + L.

which will have also secular terms.
. , S 4
In a simple non-linear case it has been proved that

a combination of these integrals with the above integrals

[

can eliminate the secular terms and give n formal time

independent integrals of motion. These resonance integrals

G. Contopoulos, Astron. J. 68, 763 (1963).

{16)



may be rather different from the above integrals (&6). It

seems prokable that one can find such "resonant” integrals

in the case of time-dependent potentials of the form (1) also.

In many problems the Hamiltonian is given in the form

2) + ¢ H
+ vy,
Yy €

—
[
[89)

S

¥

wnere ¢ 15 a small parameter and H€ is of degree > 2. Then
we find integrals of the form
¢, =T +e T, +¢2 7 as)
i7 i) i(2) 1Q) 2
where ¢, .= §. ., and
o) 12
T ey s 50
$. . = = {7, H )dt . {20
i, {v+l) ¢ode (v) e !

The integrals éi are useful in giving bounds for the

orpbits. E.g.., in a two-dimensional time independent

potential the boundary f(xl,xz) = 0 of an orbit is found

by eliminating Yy Y, between the two equations (19) and

$. Ag asd 2¢
3:1 ’312 d-l \_@2 .
= 3 - ~ =0 . QL)
)}l L—Yz “yz -yl



may be rather different from the above integrals (6). It
seems probable that one can find such "resonant" integrals

in the case of time-dependent potentials of the form (1) also.

In many problems the Hamiltonian is given in the form

1" 220 2
2o Uy vy reH (18)

i=1

where ¢ 1s a small parameter and H_ 1is of degree > 2. Then
w

we find integrals of the form

o= & F e $, + € .Q_ e 9

i l@)+ *1(1.)‘r iQ) ’ (to)
where ’l"\o)= ?12’ and

TLo(ee1y T T Gy ) (HAE (20)

The integrals i, are useful in giving bkounds for the
L
orbits. E.g., in a two-dimensional time independent

potential the boundary f(xl,xz) = 0 2f an orbit is found

by eliminating yl,y2 between the two equations {(i9) and

-3 3 =0 . Q1)



In the case of a time dependent potential we take

the set of the curves f when t takes all the values within

vl

e}

eriod. If these curves are closed, their outer boundary
cefines the space inside which the orbit is confined.
These curves are in zero order parallelograms. Therefore
if ¢ is sufficiently small the curves do not extend to
infinity, and the orbits are confined for all times.

This is exactly true if the integrals ii are convergent.
In general, their convergence is unknown. However, if H
is given, one can find another Hamiltonian coinciding
with H up to the terms of any given degree, which has
convergent integrals in a region around the origin5 .

It seems probable that even when @i are not convergent,
the orbits will not go to infinity if e is sufficiently

small.

> The proof is the same as in the time independent case,
G. Contopoulos, Astrophys. J. 138, 1297 (1963).
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III. APPLICATION

As an example of the general case we consider the

potential
1,2 2 2 2 . 2
vV = E(wl X, + wy x2) - & sinyt X, X, . (22)
Then
1, 2 2 2 2 2 2 _ 2
H = HO+ € H€ = E(yl D R xz)— 651n¢txlx2 , (23)

where ' = dxi/dt.

One can find now two integrals of the form (6), namely

r 2 2 2
T3 Al X1 T Yyl =§ > o 2 c YyTaysinutxy
Lo2w {u = )
L 2 1
1 2 2 2 2 2 2 2 -
T T3 2.2 2 2 ‘\“cos’t (o ! ~u, 2) ¥y (Y= xp ) =By x Xy,
2L21(x -4 —4w2) -1641w2§
., 2.2 2 2 ,222 2,2 2 ‘
+ Sln“t{il(¢ ¢1T4L2)Xlky2 ) + 412\L T, - 4“ )le2Y2/) , (24)

W
oo}
ol



"
[ R

11

22 2 2& 2 2. 2 2 2 2 -
-+ an iy - { — v
2%ty 5) 2. 2.2, 2,2 272 { wcosut] 2‘*jzi"l(yz LX) (e A )X Xy,
wo { (g —wy=4uw,) -16u, }
2 1 2
2 F,2 02 0202 220 .2 2 2 - -
¢ sin +, g =-d » G e » 4 - £+ WY ., X Y L . 3}
*oapsinet {wduy=du, )X (v mapx,) 4 1Y %Y, (2
The sum of the integrals él and @2 is
2 2 2
o &
+% = ;( + 22l 2) - esinwtx xz + € (Y2+ 2 2)(JCOS tyl+i = tx !
g T WYY Xy TeX, ESINWEX o 2.2 2
2 1
L
1 - 2 2 2 2 2 2 2. 2 2 2 -
1 L at () et oy - - o0 ¢ _—iy iy :
2”ﬂ (rz_hz 4l2)2 1,!2w2i c05¢tL(1 wl+442)yl(y2 £2X2) 4m2(¢ +»l 4@2)xlX2y2M
By g Al »xl-— -2 -Lo,;,,l 2}
-
|
:2 2 2 2 L .
& s&.ip (! ¢1—4t2)x (yz 5 2) Zyl 2y j }j + .. (26)

The last integral is similar to the Hamiltonian, but there

is an extra first order term in it.

h o

A number of orbits have been calculated in this
. . 2 2 _
potential, with Wy = 0.076, wz = 0.55, ¢ = 0,206. We use

these values in order to be able tc compare the orbits with

those calculated previously in a model of the galactic
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: 6
potential near the sun , where

. (27)

H = }( +y._+ 2x2+u2 2 x2
= WYty g X ruox, X% 3

Figures 1-4 give 4 orbits with the same initial

velocity at the origin (Y’C = 0.0512, Yoo = 0.112s6) ,
i 1
one for the Hamiltenian (27) with ¢' = 0 and three for

the Hamiltonian@iwith , = 0.1, 1 and 10.

The calculations were made for 600 time units at least
with the Runge~Kutta method in double precision and a step 0.02
and/or 0.01 time units. A comparison of the results has
shown that at least 7 decimal figures are always accurate.

The wvariations of the Hamiltonian and of the "third"®

et

ot

in in first approximation are given in Table I.

egra

or compariscn the corresponding gquantities in the case of

Fi
]

the Hamiltonian {27) are given. There we know that inclu-

sion of higher order terms gives a very accurate third

. 7
integral .

6 G. Contopoulos, Stockholm Obs. Ann., 20, No. 6 (1958).
See also ref. 2. :

7 B. Barbanis, Z. Astrophysik, 5§, 56 (1962).
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TABLE 1I.

Values of the Hamiltonian and the first order
"third" integral.

2H 2H ¢ ¢ z

min max init min max

'ime indep. 0.0153 0.0153 0.00131 0.00129 0.00139

= 0.1 0.0146 0.0153 0.01492 0.01478 0.01492
W= 1 0.0132 0.0178 0.0148 0.0147 0.0161
&« o= 10 0.0137 0.0163 0.015299 0.015296 0.015299

The initial value of 2H is always the same (0.0153).
It is seen that the "third” integral is always better

conserved than the Hamiltonian.

The boundaries of the orbits in the time dependent
case, are oscillating, especially in Figure 3. These

boundaries can be found as follows: Equation (21) gives

y Y, = 00 (28)
hence either y, = 0(c). or y. = 0(e). 1In the first case
4 ~

we have in first approximation



MY
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-
| 25 2sinit x
_122 L “T250717 1
. T =X, + ¢
1 27171 2‘2(&2_% )
) 1
- 1 {=Buw 1212 osut x.X
ol (Pn? 22 o33 T T SO 2¥2
g wl L) = buy 21
2,2 2 2 : . 2 2. . N
+ Ll(& wl+4x2) singt xl(212: szxz) j él;o .
where y_ = + /2% -wzxz and ¢ 4 are the values
2 — "7 2i0 272 1;0° 20

[N

of the integrals at the initial point.

In the second case

2:9 “2icoswt yl+(12+1§-41 }sinwt xl
--4“L ) ‘l6ﬁ

[N )
NN

4
f” 2 2
{uL
L l l

3"

2
1

f 2

+ /23 x2 Hence the boundaries are near
i 4 = v : et -

the straight Lines X + /2§, /¢, and = + /2 £
L = = y P
E 1 107 %1 Yo, 7 2 2:07 2 ¢
varying periodically in time.
The deviations are larger when we are near the

resonances gy = €y or w =:212iwl , or any higher order

resonance. In the above cases w., = U.27568, wy = 0.74162,

1

hence 2¢2+u1 ~ 1.76, 242—11 ~ 1.21. The last quantity is

2 i -
Y2

(29)
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nearest to w = 1; this is the reason why the boundaries

change more in case 2b. The "third" integral is better con-

served when w = 10, because this value is far from resonances.
Then the space filled by the orbit is very nearly a parallelogram.

Similar results were found in many other cases. Fig-

, , .2 2
ure 3 represents two orbits in the case wl = 1y = 0.1,
¢ = 0.1, x =1 . The orbits are rather different from

those of the corresponding time independent case (27),
except for the orbit 3b, which is near a periodic
orbit. In general, one expects that the resonance effects

of the time-independent case, which depend on the value of

31/¢2, do not affect the time dependent case,
ES

Which depends on some relation of Ly wz with . In the
present case it happens that 2m2+wl = 3x(0.3162) = 0.949
is near ¢ = 1 , but this near resonance is of a different

nature than the resonance @. =

1 ¢ The subject is worthy

of further study.

The initial conditions in the above cases are

= 0, and Yig = 0.013, = 0.060465 1in case 3a

10 T Yy Y55

and le = 0.035 ., y20 = 0.05099 in case 3b. We find in

case 3a: 2H. . = 0,003825, 2H . = 0.00336, 2H = 0,00417,
init. min max




¢, . = 0.06319, ¥ . = 0.00297, 2% = 0.00319, and in
init min max

case 3b: 2H. . = 0.003825, 2H 0.00186, 2H = 0.00450,
init max

min

?. ., = 0.00261, ¢ . = 0.00240, ¢ = 0.00261. It 1is
init min max

seen that although we are near a rescnance, the first
order third integral is conserved much better than the

ENEXrgy.
Our experience, from the time independent cases,

indicates that the conservation of the "third" integral is

always improved (to a very high accuracy) as more higher order

terms are included.
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IV. COMPARISON WITH THE ADIABATIC INVARIANTS

The most simple adiabatic invariants are given for

one~dimensicnal Hamiltonians that vary slowly in time.

N
)1

. ar
If i1 depends on the time through X, where 5? is small
(T is the period of the motion), then
ne acticon integral J = 0yldx 15 approximately constant
Usually H 1is considered to vary only during a finite time
interval, being constant before and after that. 1In a
system of n degrees of freedom, n adiakatic invariants

< ... B
can be found when the system is separable .

If H i1s not separable but is a slowly-wvarying function

of the time and of some variables, besides Xl' yl,

then the action J = oy,dx. is an adiabatic invariant under
4— J.

certain conditions that will be specified.

Gardner gives a general method to construct adiabatic

invariants by successive approxXimaticons. We will

Qs
i
wn
#]
I
FJ
197
m

his method, and the conditians under which it 1s applicabkle.
We assume that H is a function of tAxl,yl,xz,yz... and

-

of a small parameter :, that satasfiey the following conditions:

g , . .
L. D. Landau and E. M. Lifschitz, Mechanics, Pergamon

Press, New York {1960).

2 C. S. Gardner, Phys. Rev. 115, 791 (1959).

——




1) In zero order {(i.e., for v = 0) it is separable.
2) It is a slowly varying function of the time and of

the variables xX._.,X

5 ++-. f{(and eventually,but not necessarily

3

JxX_, ... {and,

of y2,y3... ) i.e., it is a function of %, 3

ossibly, of DOV SYRRE ), i.e.,

LY
-

1 * g - :
\ 15,4 e il
lo qut 2i

Pt

’

. \
= H (X,,y, tX5.¥, --- at) +
H o ‘XY Yy

wiiere HO includes all terms containing Xl’yl' and has no
zero order terms in yz, ces .
3) The curves H = const. for » = 0 and y, = const.

s S

{1 ® 1) are closed: then they are closed also for small
values of 4 and fixed tlxg,yi(i > 1).
i
An adiabkatic invariant 1s constructed,step by step,
by successive coordinate transformations:
I1f we Xeep t and xi,y4(i > 1) constant the curves

H = const. are transformed into circles by the following

area preserving transformation

k]
I
H
0
0
v
o>
e
-
]
8]
]
b
3
x>

(31)




(%

J is the area 1inside the curve H = const. and ds the line
element along this curve. The curves H = const. are circles
i1n the new variables.

Because of the conservation of areas xidyi + yldxl

1s the complete differential of a generating function Fl and

t - A A,I . —- :% ;
Xl VFl/‘}}_ 3 l’ 'Fl/‘x

1 1

F. is a function of x with coefficients functions of

1 1Yy
1t,iX2,y2,..., which are kept constant in the transformation

{32}. As we can add any arbitrary constant in Fl we may

write

)

. = xzyé T oee. t wl(xl,yillxz,yé.--o at),

4

where does not contain terms independent of x,.,y, .
ps -

1

-

Then the egquations

' = XF o= A Aay! = ¢ Al 3t ...

together with equations (33) define new canonical variables

i [}

Xi{,Yi{s, With Hamiltonian

I = H + M./t = H + ary. /3 (at),
H H + 3F,/at = H + w2y, /2 (at)

wnich 1s of the form

2 '
+
2

4

2 * ' s . ;‘.— ¥ st . [}
+ yi ,ut) o+ Hi(yz,ix .. ut) + le(xl,§l,ux2.y2, ee. at) .

(33)

(34)

{36)

(37}
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The term ;Hl contains all higher than zero order terms

including xl,yl.
Tne next change of variables transforms into circles

the curves Hl + jHl = const. for t,x‘,yi(i > 1) constant.
i

The deviation of these curves from circles is of crder o,

therefore the difference between the two sets of variables
will e of order .
The new generating function can be written

Py Ty

t

SYy t eee ¥ &tz(xl,yl,¢x2,y2, ce. at),

where V2 does not contain terms independent of xiy{

Then

X:: = x + ’\_j " /:j‘,n € - 1] + i:\* b' /’:}X "
1 A TACE S W Yy =¥ 2 '
2 . 2 .
XD = x4 3L/ 3yl L=yl o+ oAy, /2 {x! cen
5 EINENEY Yy, =Y, . ,,‘2/ x50,

anag the new Hamiltonian 1S

28

x -
+ ' Lut) + Hz(yz'“xz""ft) + aﬁz\xl,yl,mxz,yz,... LT} .

By repeating j{ times this procedure we find

< * N= . , , ,
} + {yéﬂi) . -!~t>:‘ + HN (yz(N)' !xéﬂ); .o lt) + J“ HN ‘xl(N)' )71(.N)' ,X(EN)’ yzl

(38)

(9%
[Xe)
—

N)
FENURUE o BN

(42)




21

Then the guantity

2 2.
J(N) - C(X{N)) + (Xé"l)) /\

——
Wb
[9%)

~—

is constant to order N-1, 1i.e., dJ(N)/dt = O(mN). Therefore
(N formal
1f Ny SA is a pAintegral of motionj this is the adiabkatic

invariant.

If, however, both Xx_ and y_ appear in H (not through

2 2

X ) in non linear terms, then the above method is not applicable.

2" Y2

E.g., in a two-dimensional system, let x

5 ¥, @ppear in
non linear zero order terms of H* and let x_ appear also in
o 2

a mixed term (ancluding xl and/or yl), of degree n in .

and > 2x_ includes terms of degree n, containing x1 ang/or

y. . because, by its definition, F, does not contain terms
A &

(=D

ndependent of xl‘yi except xzy;; Thus the expansion of
- * . bl . e . L]

do gives n-order mixXed terms (containing yz).

Thne neXt change of variables gives

x” = x! + n order terms containing x! and/or y. +...
Z Z By 1 }
and Ff contains again n-order mixed terms. By n such

hanges of variables we can reduce all terms containing

0

%, and/or Y, up to order n-1 to a function of (§;5z+(§?52,

i



Laal
k3

€l

of

%
";vf a

al

C

ch

du

oxf

=%

. ‘ 02

“e (n+l1) transformatioc

= < BERAS M

Q

s 3 PRl e e B o
f wvariabkles, however, cannct

b

iminate the n corder terms that include xl,y :+ kecause 1in the

l f
*
w the zero crder terms of HN will give agaln mixed
{
] e n+1 : n
craer terms including xi ) and/or yf )_

9 . . .
In Gardner's paper the Hamiltonian considered is

the form (3 ), but the above conditions are not expli-

H does not depend on the time and on the variables

,y2 ... Therefore i1f for t « tl and t > t2 the

riables xi,y, are such that H has zero derivatives of
i

1 ordexg with respect tc t,xz,yz, ... , then the action

ledxl is well defined for t <« tl and t > t2: its

I

ange during the time tz—t is of order higher than

1

N . : B , .
Yo {:t 1s at least of order exp{-a/w), where o is a

In general, however, there is no time interval

ring wnich H = const. and nc space where H 1s independent
et Ym eee
232

In the case {(27), we know that we can make the

stem separable by a formal variable transformation. known

Hertweck and A. Schluter, Z. Naturforsch. 12a,
(

299 (1957).

P. Vandervoort, Ann. Physics, 12, 436 (1961).

n

;

{
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If we set ¢' = 0 we find explicitly a generating function

v (2 53 (v2mu2x?) 14425 x
S = x.y! + x.yl ¢+ 5 Yy Wptigxg) ¥y (YymupXp ) ¥ ™Yo, (44)
1t T2t T2 U 202 2 (12-g42 ;o
12 wyluy=duy)
that gives
y' o= - it + (45)
jl yl ‘2—4’2 - =& ‘_i,v
T2
etc. Then
¥ max iqxlmax - X max dey'xly!
= 2 ix, = 2| 26 = 2 2y 122 N dat (46)
=<4, % T4 0N AR S 2_, 2 e
R ) - el 201
xlmzn leln leln 1 2
The quantity
;lea}(z
2: y! odt
x'min

s a constant, with an error of order higher than tne first;

i

in fact we no-

tice that it is exactly constant if x,min, X max are replacecd by
“

Xfmin , ximax, and that the value of yi for x;mln; ximax

is zero. But the guantity
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is not constant, in general. Therefore J has variations
cf tne first order in ¢. Thus the adiabatic
| ()
invariant J N - =) is more general than the action
J = oy.,oXx, .
JiiT7

A comparzson of the adiabatic invariants in the form
*N} : 3 Y [E T LT}
J  with the "third" integral shows the following:
a) Both are formal series expansions in terms of
(or some small parameters).
small parameters { When the "third" integral is given in

power series in the variables and nc small parameter

formally appears, we may consider as small parameter th

M

elf. 1In fact an expansion (27) may be written

11
]
n
[a
[39]
3
s
ct
[4)]

in dimensioconless form

X, 2 y., 2 X, 2 /., 2 Xy ¥,.2 x
2 51 ¥y 2525 X2 L % 2eom By 3
Pyl T/ T LT T Wy T s T T2 T e T T = T - =
1 ‘ZH/ “qH~ PASYAT I \/Zh/ 2 \,{_/} Q/ZH/ S \’:H/
(4
anc the small parameters are essentially ¢/H |, e’,?i,

¥

ancd if ¢ and ¢' are constant the small parameter is 2f .
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The difference is that the small parameter in the
case of the "third" integral refers to a term, or terms, while in
thie case of the adiabatic invariants it refers to a

variable, or variables.
o 4

1) The "third" integral is more general in the sense

A1

oes not require H to depend on @xz...f rather than XE"'

o

In tne case of the Hamiltonian (27) we cannot find an
adiabatic invariant, because both x2 and y2 appear in zero

order. On the other hand 1if sy 1s small with respect to

we may construct an adiabatic invariant expansion in

rowers of .. This expansion is preferable, because the

<

third integral expansion is not valid when ;, - 0 or ,_ - O.

i T2

¢} The adiabatic invariants are more general in th

[4}]

sense that they apply alsc to non periodic time dependent

Hamiltonians.

d} The practical construction of a "third"” integral when H
15 a series is comparatively easy. The formulae for finding higher
order terms are given, and the necessary algebra can be

performed by an electronic computer . In the case of




—
12

- T -
e adil

i)

batic invariants the changes of variables that
transform the curves HO = const. into circles cannot, in

general, be given analytically in a simple form. 1In

practice one snould expand in series of another small

parameter alsc, which is the parameter that measures th
deviations of the equipotential lines {in the i ,x.,y. pla

1 1 1

from circles, i.e., it is essentially the parameter used

in the third integral.

On the other hand if the Hamiltonian cannot ke

€

-

i}

e)

expanded i1n a power series, the method of the third integral

way not be applicable, (except in special cases like the
restricted tnree-body proriem, €trc.), while Gardner's
methnod 1s 1n principlie still valid.

We apply now both methods to the simple one-

dimensional Hamiltonian

. 2
(w] X, + y,) = esingt Xy .

o7 I

This case can be reduced toc the well kXnown Mathieu

1¢
equation

N.W. McLachlan, Theory and Application of Mathieu
Functions, Clarendon Press, Oxford (1947), pp. 77.90.

(43)



9—§ +(a-2gsin2z)y = 0 , (49)
dz
by setting
Y = Xl, vt = 22, a = 4;5/)\2, g = 4{7/‘1"2 . (50)

in tnis case the transformations propocsed by Gardner

can be explicitly carried out and we can compare the

adiabatic invariant directly with the "third" integral.
The "third" integral in second order approximation 1is

)

2z ycosyt X,y,-sinait 2,2 2)\

2 T COSHT Xy Yy TSI LAY T X
+v. ) o+ - —
“1 Z 2z
1

( z
1 X
Tl

N

x
[l 2]
A
n
"_AI
S

+ cos2uat (yi+ v, X

Y N
ol
[y

2 2. 6"2 oD
wlxl) + ¢w151n a4t xly

2
1
FY

2520 o ;
(07 + ul)cos at (y 15

In applying Gardner's method we have to calculate the

area J of the ellipse (48). Using formulae (32) we find
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. 2H
I = g mm— (52}
p2=2csinwt !
and
V2 .
-1 11-2e51nWt
4 = cos | — X, ) . (53)
\\ f2H }‘/ ¢
Then
, 4/ 2 . 4/ 2 ,
X, = vll—ZESlﬂyt Xy yl =~/wl—2€51ngt Yy {54)
4/ 2 . ' -
Fl = Jﬂi-2€51u!t xlyl , (55}
and
¢ 2 - - -~ 3 i
Voo =2ss1inut - sfcasnT Xyl
1 L , 2 1 \
H' = > xy + ¥y ) - 5 (56)
* Z{mw-zesingt)
The next change of variables is effected in a similar
way. After some operations we find
el 2
o= oyt o recositilyy =x ) (57)
2 %1 T T 3/2 '
8'\:,-‘_"‘312’13\‘{‘_/
recosat vy, $ECOSmt Xi
x¥ = x! - = A z ! (58)
1 1 3/2 1 1 /2

2 } 3
4(wi—2€5ingt) 4(wl—2€81n¢t)
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fu

jo]]

o

in
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/gi-ngin,t

2 2
"o " L0 4 59
H 5 (xl + ¥y + 0O(+) (59)

Similarly we find

2 - 2 ) 2 -
4 & llecos wt-451nlt(wf n,t)] .
S I 2 .3 Sy (60)
32 (;,=2¢sinyt)
2 . 2 . 2 .
» + £ 1lz=cos 1t-451n1t(wl-2g51n1t)]
V_H zvlnl"l + - ; (61)
“1 “1 2 , 3 .
8(m1-2651n1t) /
fz _ " - -
1,=42851net < 4 _ <L a a -
H = 1= 5, (T ) 2 00T (e2)
32 (:y=2esinyt) ™7

The adiabatic invariant in second order approXimation

. 5 5 _ ;3 5 5 $£COSHt X y.
= —(xi" + yi”) i/ = 1 yl+(rl-2€sin¢t)xl - =S
WE=2csingT (ll—2551ngt)
1
(63)
2 2, 2 2~ 2 . 2,z , 2~
SCos it 7x, {([=2esint)=5y, = 2sinut{,, =2esingt) X, (Wi =2esinet)-y]
N i l," < . A l 4
3

2 o
8{(yc ~ 2ss1in+t
(+] )]
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Both expansions are eguivalent if ¢ and « are small.

we omit all terms of order higher than two in ¢ or w

find
r 2,2 .27 B
;‘fl . < (‘-}vl-rEi )}—J 1 _ :}' 2+ ‘2 2 “Sil’}‘l‘t(ﬂz_uz 2)
* 7 |7 =3 NntnX 2 1T N
j 160, J 2= e
. 1 1
-
_ :ICOSttY o azsznéit(3 _JZ 2, _ 3¢ JsinZQtX ,
2 171 J& TN 5.4 1¥1
1 1 1
2 2 2
4 zZsinat, 20 2 2 v, 2.2 2 2 2 2 2
+ " (yl-*lxl) + ¢ LTy %y Syl+51n Jt(lSYl l3wlhl)j=}
4‘_{:1 ‘c§1=l

above form of the

The ""third" integral expansion is preferable if = is

small (g small in Mathieu's equation) if we are not near

2 2 2 . 2 2,2
resonance (v = Ly ¢ = 411, and in general » = 4gl/n .
: 2\ ~ h o 1A W A
i.e., a — n }. The resonance cascs should be treared
separately.
1%
. . \ s - L AT X .
A compariscn 0of the Vvaiues Ci : anc nas been maae

some orbits calculated numerically, by the Runge Kutta me

in

all the casss ., = l) and the calculations were made for

1

©4)
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300 time units with a step 0.02 or 0.01 time units. A

i

check has shown that at least four significant figures

H

in XYy and five significant figures in H, ¢ and JB}are

ps

accurate. Table II tives the data and the values of the

=]

energy H, the third integral (given by formula (51}))

and the adiabatic invariant (given by formula (63}}.

TABLE II

Comparison of the "third" integral with the adiabatic invariant.

/’é& Yy H, ., e¢B. .  H ' H i B

. . < ey —— =
t init max min - max min max AT

1. 0.2 .1 0. 0.1 0.005 0.01 .0.0055 0.0045 0.00499 0.00497 0.005000 0.604998;
L. 0.2 0.2 0. 1. 0.5 0.2  0.38 0.59 0.50 0.48 0.500 0.456
1.0.6 0.2 . 1. 0.5 0.2 0.6l 0.35 0.50 0.45 0.52 0.44
1. 1.2 0.2 0. 1. 0.5 0.2  0.87 0.44 0.58  0.53  0.72 0.48

it is seen that for small values of 4 the

1

orde

o

5¢

"~

c
3 seconé order
adiabatic invariant 3‘ is better conserved than theﬂfthird’

integral %. However for ¢/y., approaching unity % is better
Ao

3 C o .
conserved than J°. This is more evident for larger w. The




conservation cof the zero and first order "third" integral
anG adiabatic invariant is always worse.
This example gives the range of values of w for which

an adiabatic invariant is useful.

If , is near a resonance case the above formulae are
no more valid, although resonances are not apparent in
formula (62). in fact in a numerical example n the case

=._ =1 we have found continuous increase of the amplitude
-+
of oscillations, and JQ}lS not even approximately conserved.

This fact indicates that the action J is not an

iabatic invariant if there 1s a resonance between the

5t
Ol

the perturbation and the eigen~-freguency of the

[
H
18]
W
o
43}
3
@]
Hty

Yy ©

ST €I This fact was xnown to the first authors that applied

: ; L , 13 , . o
+he adiabatic invariants  ~, but is rarely mentioned explicitly

The example discussed here shows clearly the distinction
between the "third" integrals and the adiabatic invariants.

o~
o W

Ft

They are expansions 1nh TEr different small parameters;

in trne case of the third integral we have a small term,

lJ'See, e.g., A. Sormerfeld, Atombau and Spektrallinien, I, 7th ed.

F. Vieweg & Sohn, Braunschweig (1951} pp. 370, 698.
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whiiile in the case of the adiabatic invariants we have a slow
Gependence on the time and/or some variables.

This example shows further that the relative accuracy

4

the two exXpansions depends on the values of the parameters

O

used. It indicates also the disadvantage of the adiabatic
invariants, in that they cannot be used in resonance or near

resonance cases.

This work was done while I was an NAS-NRC senior research

cciate under the National Aeronautics and Space Adminis-—

W]
n
wn
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X
fut
}.)

facilities at the Institute for Space Studies. I thank

ct
oo
13}

alsoc Drs. K. Prendergast and J. Kevorkian for interesting

Giscussions.
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CAPTIONS FOR FIGURES

L. Orbit in the potential V = %(mixi + ng

34

2
2) - £X.X

m§=0.076’w§ = 0.55, ¢ = 0.206, and initial conditions

xlO = x20 = 0, ylG = 0.0512, Yy T O-

Z2a,b,c Orbits in the potential V =

2
(’;?J X}‘ +

2
xﬁ
&

for the same constants and initial conditions and

(a) = 0-11 (b) W= 1: (C) L= 10'
3a,b Orbits in the same potential as in Fig. 2, for
2 2 . o i oy
Yy T u, e o= 0.1, + =1 and initial conditions
i
X109 T ¥, = U and {(a} Yig = 0-013, Yoo = C.060465;

(k) Yig = 0.0G35, = 0.05095.

Y70

. 2
J=csin tx, X
172
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